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ABSTRACT

STOCHASTIC APPROXIMATION WITH CORRELATED DATA

New almost sure convergence results for a special formof the
multidimensional Robbins-Monro stochastic approximation procedure are
developed. The special form treated is motivated by a consideration of
several algorithms that have been proposed for discrete time adaptive
signal processing applications. Most of these algorithms can also be
viewed as stochastic gradient-following algorithms.

Essentially, previous convergence results contain a common
"conditional expectation condition" which is extremely difficult (if
not impossible) to satisfy when the "training data'" is a correlated
sequence. In contrast, the new convergence results developed in the
present work are easily applied to cases where the "training data" is
heavily correlated. In fact, the new convergence results are appli-
cable when certain moments exist and certain "decay rates" on two auto-
covariance functions can be established. For example, when the data
sequence is normal and (i) M-dependent, (ii) autoregressive moving
average (ARMA), or (iii) can be viewed as samples of a bandlimited con-
tinuous time process, the new convergence results can be applied to
establish the almost sure convergence of each algorithm treated.

Several special forms of data correlation matrices that are shown
to arise in discrete time signal processing are examined. New com-
putationally efficient procedures are developed for both the inversion
of a matrix having one of the treated special forms and for the solution

of a corresponding set of simultaneous linear equations. The special

forms treated are termed Toeplitz and block Toeplitz matrices.
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ADDENDUM

Since the completion of this report, the author has become aware of the
excellent paper by H. Akaike, entitled '"Block Toeplitz Matrix Inversion"
(SIAM J. Appl.  Math., Vol. 24, March 1973, pp. 234-241). Most of the
results treating block Toeplitz matrices which are developed in Chapter
V of the present work have been developed by Akaike. In case the block
Toeplitz matrix involved is both symmetric and persymmetric, a case which
arises, for example, when each block of a symmetric block Toeplitz matrix

is a Toeplitz matrix, then the results of the present work provide a more

efficient solution than the results of Akaike.
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: I. INTRODUCTION

Although stochastic signal processing can be viewed as a branch of
time series analysis, the desire to implement simple sequential real-
time signal processing structures motivates one to approach signal
processing problems in a decidedly different manner than one would 1

approach related time series problems.\skhis work is devoted to a unified

analytical treatment of algorithms that have been proposed for discrete
time adaptive signal processing. These algorithms are treated within

the framework of the multidimensional Robbins-Monro stochastic approxi-
mation procedure. The special formof the Robbins-Monro procedure which
is treated herein and the convergence results obtained are of interest

in their own right, having applications outside the realm of adaptive

signal processing.g;\\

A. Motivation: Adaptive Signal Processing

In many signal processing applications, the ultimate goal is to
provide an "optimal" estimate of some signal process which is imbedded
in an ;dditive noise process. The physical implementation of the
"optimal" estimator (or filter structure) requires that certain parame-

ters of the signal and noise processes be known. The filter structure

is usually constrained to be a causal, linear structure and the opti-
mality criterion is often minimum mean square error (MMSE). For this
case, the optimal filter is well-known to be the Wiener filter or the %

Kalman filter. These filters can be implemented provided that the

required parameters are known. For discrete time signal processing i
with uncorrelated signal and noise processes, the required parameters
are those which completely specify the signal and the noise autocorrela-

tion sequences. The required parameter set may or may not be finite.

1




In case the required parameters are unknown, identification
techniques (see e.g., {1],(2]) can be used, at least in some cases, to
estimate the desired parameters. The estimated parameters can then be
used to implement the required filter. Due to inhereat uncertainties

in the estimated parameters, the performance of ghe resulting filter

can differ dramatically from the performance of the desired optimal
filter. A closely related approach is to constrain the filter to have

a certain fixed suboptimal structure and to estimate the corresponding
family of parameters required to implement the simpler structure.

An interesting concept that has evolved from the latter approach
is the concept of an "adaptive filter." The term "adaptive filter"
is used taroughout this work to denote a filter which designs itself,
either from the raw input data, or from some training data. Many of the
algorithms used for adaptive signal processing are stochastic versions
of gradient-following procedures. Significant early contributions to
adaptive signal processing were made by Widrow and Hoff [3], and by
Sakrison [4]. A more complete treatment of the relevant literature is
given in Chapter II.

Primary considerations in the application of adaptive signal
processing techniques are the convergence properties of the algorithms
used. Most of the algorithms which have been proposed for use in
adaptive signal processing applications are slight modifications of
multidimensional versions of either the Robbins-Monro stochastic
approximation procedure [5] or the Kiefer-Wolfowitz stochastic approxi-
mation procedure [6]. Unfortunately, many proposed uses for adaptive
signal processing involve processes for which available convergence

results are inapplicable.




P —m————

T

Mg

Sdecalioalo s ob

.

B. Purpose

The purpose of the present work is to (i) establish a unified
framework suitable for the analytical treatment of algorithms which have
been proposed for adaptive signal processing applications, (ii) investi-
gate the probabilistic convergence properties of algorithms which fall
within this framework, and (1ii) examine the detailed structure of
several special forms of data correlation matrices that arise in

discrete time signal processing applications.

C. Contents and Organization

In Chapter II, several representative systems that have been
proposed for adaptive signal processing are reviewed, including systems
used for adaptive channel equalization and adaptive array processing.
Most of the algorithms that are treated in Chapter II are shown to fall
into a specialized form of the multidimensional Robbins-Monro stochastic
approximation procedure.

Existing convergence results for the Robbins-Monro procedure are
examined in detail in Chapter III. The need for additional analytical
work to establish meaningful probabilistic convergence for the algo-
rithms treated in Chapter II is established. ‘

In Chapter IV, new convergence results are developed, providing
an almost sure (a.s.) convergence proof for a certain family of algo-
rithms under conditions wﬁich are easily verified. For example, in the
normal case, when the input signal and noise processes are M-dependent,
or stable autoregressive moving average (ARMA) processes, or can be
viewed as samples of bandlimited continuous time processes, the new
convergence results establish the almost sure convergence of each

member of the family of algorithms treated.




In Chapter V, several special forms of data correlation matrices
that are shown to arise in discrete time signal processing are examined.
New computationally efficient procedures are developed for both the
inversion of a matrix having one of the treated special forms and for
the solution of a corresponding set of simultaneous linear equations.
The special forms treated are termed Toeplitz and block Toeplitz
matrices. The new procedures represent an efficient method for design-
ing the desired suboptimal MMSE filter in case the required correlation
sequence values are known a priori.

A summary of new results and suggestions for future work is

presented in Chapter VI.
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IT. SYSTEMS PROPOSED FOR ADAPTIVE SIGNAL PROCESSING

In this chapter, several systems which have been proposed for
adaptive signal processing applications are reviewed. In Section II-A
the channel equalization problem is treated; Section II-B is devoted
to a treatment of the adaptive array problem. The main point to be
developed in this chapter is that many algorithms propcsed for adaptive
signal processing fall into the realm of "stochastic gradient-following
algorithms" and, as such, the convergence properties of these algo-
rithms may be treated in a somewhat unified manner. The literature
reviewed here is representative of the most significant contributions

in recent years on the topic of "adaptive signal processing."

A. Systems Proposed for Adaptive Channel Equalization

In this section, several systems which have been proposed for
adaptive channel equalization are reviewed. The motivating problem, to
which these systems are applicable, is the automatic equalization of
voice-grade telephone channels to reduce intersymbol interference, thus
enabling a much higher data rate for digital signal transmission. Such
channels usually are characterized as having a moderately high signal-
to-noise ratio.

It is assumed throughout this section that for the equivalent
baseband system at time ¢t = kT, k = 0,1,2,..., a real-valued random

variable a is transmitted into a linear time-invariant channel having

k

unit pulse response {hk}:--w' The output of the channel is corrupted
by additive noise, neo and fed to the input of an adaptive equalizer.

The input to the adaptive equalizer, is thus given by

Xy

X = L ah  +n . (2.1)
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The sequence (ak} is the information-bearing sequence which is to be
estimated by the output of the adaptive equalizer. For digital data
transmission, a, is chosen from a set of M discrete amplitudes via
some probabilistic rule. It is assumed throughout that {ak} and {nk)
are uncorrelated, i.e., that E{aknz} = E{ak}E(nz} for all integer k,%,
and that E{nk} = 0, where E{‘} denotes statistical expectation.

A commonly used equalizer structure is a transversal filter having

p adjustable weights. Defining W and xk by

W' = (wl,wz,....wp) .

(2.2)

X' = (x

X k'xk-l""’xk-p+1) 5

where ' denote$ matrix transpose, the output of the transversal equaliz-

er can be written as
"= w'xk é (2.3)

Suppose that it is desired to choose W so that Y is a "best esti-
mate" of a_, forall k= a,a+l,..., and for some fixed integer «.
There have been a number of "criteria of goodness" proposed for charac-

terizing the '"best estimate." Defining

R L T

(2.4)
! =
L Sl LA, D
the output of the transversal equalizer, ¥y » can be expressed as
1 L]
= W' + ] o ' ' 2
v, = W'H (a__ + (W'H) L aW'i )+ Wy . (2.5)

==

L#k~a




From (2.5), it can be readily seen that the distortion due to

intersymbol interference at time t = kT 41s given by

e
I = (W'H) aw' . (2.6)
k a Eng L uk-l

L#k-a
One easily obtained bound for Ik is given by
-1 2

|1k| < B = max |a£| Iw'ual ) lw'e | . 2.7

2 m=-—o

m¥a

It is noted that for channels having severe intersymbol interference,

B may be infinite; however, in case B is i;finite the channel has the
interpretation of an unstable linear system in the bounded output for

all bounded input sense. Lucky [ 7] has considered automatic equaliza-
tion from the point of view of minimizing B with respect to W subject
to the constraint that W'H& = 1. The constraint that W'Ha =1 is
convenient for digital detection in that the decision regions (or

slicing levels) can remain fixed under this constraint. The procedure

proposed by Lucky [ 7] makes use of a sequence of isolated unit training

pulses. Define D by

D= ) |w'H | = 3 W'H_sgn(W'H ), (2.8)
= -0 mz-m
m#a m#a

where sgn(y) =1 4if y > 0 and sgn(y) = -1 if y < 0. Noting that

(formally)

3= L b _.. seaGW'H) (2.9)

% m=-w

m#o
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and assuming that hk =:°6k,o' where 6k,l is the Kronecker delta,
3D _ ;
= © sgn(W Hi-l) - (2.10)

i

for all i =1,2,...,p and {1 # a + 1. Furthermore, from (2.1) it
follows that for a, = 62’0, X = hk + n = ch’o + n; hence, from
(2.3), Ve = w'Hk. Consequently, Lucky considers incrementing the weight
vector, W, by the following scheme: after each test pulse has arrived

increment w; by -u sgn i1 for 1 # a + 1, and increment w by

at+l
-4 sgn (yu-l). The constant u > 0 1is termed the step size. For chan-
nels capable of supporting binary transmission without equalization,

Lucky shows that IW'H is asymptotically bounded by 2u for all

11l
i=1,2,...,p,1 # ¢ + 1, assuming an infinite signal-to-noise ratio.
Similarly, he shows that IW'Ha - 1| is asymptotically bounded by 2u. In
[8], Lucky extends the results of [7] to obtain a decision-directed
adaptive equalizer which does not require a sequence of isolated train-
ing pulses and can "grack" slow time variations in the channel charac-
teristics. Lucky also investigates what has since been called the
"probability of a runaway" for his system. The equalizers introduced by
Lucky have also been called '"zero forcing equalizers" in that they tend
to force p - 1 zeros in the overall unit pulse response W'Hk.

Gersho [ 9] has considered a scheme somewhat similar in nature to
that of Lucky [ 7]. He considers minimizing the deterministic lz norm
of the error sequence. The error sequence is the difference between the
deterministic part of the equalizer output and the desired output,
assuming that a sequence of known isolated training pulses is being
sent. Suppose for the moment that n, in (2.1) is identically zero.

Then with yk given by (2.3) and d the desired equalizer output,

k

e e e £ e




Gersho [9 ] considers choosing W to minimize

£ = Z(yll - d‘)2 . (2.11)
%

Motivated by (2.11), Gersho considers minimizing

;:
6= L O, - d”_)2 ¥ (2.12)
!.eJk

where it is not assumed that n,_ = 0, and J

k k

Jk - {20 + kg, 10 ot k£4-1,...,2° + k& +«} . (2.13)

Gersho assumes that x, and d, are virtually zero for all £ f Iy

for an isolated unit pulse sent at t = ki, and that £ >«. The

gradient of Ek with respect to W = Wk can be expressed as

vwgkl =2RM, - 2P, , (2.14)
W=W
k
where
= ]
Ky R,ZJ XX (2.15)
Sk
and
Poe ) d X (2.16)
D,eJk

The resulting algorithm for "training" the weight vector, W, is given by

W =W - u(FkW - P (2.17)

e+ = Yk Ko

where wo is arbitrary and u > 0. It is worth noting that for
R=E(F,}, P= E(P,}, w =R 'P is the veight vector that minimizes
E{Ek}, where Ek is given by (2.12). Gersho [9 ] shows that for a
suitably small u > O, E{(wk - R-IP)'(Wk - R_IP)} can be asymptotically

bounded by some e(u), where e(u) + 0 as u + 0. Furthermore, he

is an index set defined by
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points out that for increasingly large signal-to-noise ratios,
1

R P+ A-IP, where A 1s given by
A= ) E{X)E(X'} . (2.18)
L L
!.eJk

The weight vector W = A-IP characterizes the equalizer structure
which will minimize the noise-free criterion of (2.11). Gersho also
discusses techniques for choosing u to maximize the convergence rate.

Niessen and Willim ([10] consider the minimization of
£ = Elly, - a 1%} (2.19)
k k

with respect to W, assuming that {ak} and {nk} are jointly wide-
sense stationary and that E{akn2}==0 for all k # 2. With Vi given

by (2.3), the gradient of £ with respect to W 1is

vwg = znxxw -2 , (2.20)

where R = E{XkX£} and P = E{akxk}. Equations (2.19) and (2.20)

suggest the algorithm

Wiy = W= u(Rxxwk - P) . (2.21)

Unfortunately, since ka and P are assumed to be unknown, (2.21) is

inapplicable. Consequently, Niessen and Willim consider approximating
' * *

Rxx by kak and P by ykxk, where yk is a quantized version of

Vi The quantization of Y is performed according to the a priori

known possible discrete levels of {ak}. Substituting these approxima-

tions into (2.21), the following algorithm results:
- - - gk
Wk*1 Wk uxk(yk k) . (2.22)

This algorithm represents what is commonly referred to as a

s

bl
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"decision-directed equalizer" in that decisions which are made about

a (i.e. yz) are used in the algorithm to train the weight vector.

k-a

Clearly, in order for the algorithm given by (2.22) to "converge,"

. The conver-
k-a

gence analysis performed by Niessen and Willim [10] is essentially

y{ must initially be a very reliable estimate of a

deterministic and assumes yi = ak—a'

In order for the strategy represented by (2.22) to be useful for
moderately low signal-to-noise ratios (viz., less than 30 dB), a con-
straint such as used by Lucky [7 ], i.e., W'Ha = 1, seems to be essential.
It is noted that the technique of Niessen and Willim does not inherently
require an initial "“setup period" with known isolated training pulses,
and it can be capable of 'tracking" slowly time-varying channels.

George et al. [11] consider a decision feedback strategy somewhat similar
to that of Niessen and Willim [10]), using an adaptive transversal filter
following the quantizer. The output of this second transversal filter

is fed back into the input of the quantizer. Monsen [12] presents a
performance comparison of decision feedback and linear equalizers.

Schonfeld and Schwartz [13] consider the following algorithm

which is quite similar to (2.17):

. i P (2.23)

el ™ Wy - o (F

L

where Fk and Pk are given by (2.15) and (2.16), respectively. With
R = E{Fk} and P = E{Pk}, Schonfeld and Schwartz [13] choose

o o i (2k + Dn,.-1
Oy 2[(1u + xz) (A“ Az) cos ( N )] (2.24)
for k = 0,1,...,N-1, where all of the eigenvalues of R are assumed

to be contained in the interval [Al,ku]. In [13], they show that this

choice of {ak}z:é is optimal in the minimax sense for minimizing

s aliacin SRt L o
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EfwW, - R-]Pl'Eﬁ%‘ -k ). 1In [14], Schonfeld and Schwartz extend the

above philosophy to obtain a second-order algorithm:

W = Wk - ak(F W ;5 (2.25)

K+l kT Pt A -

"k-l

where B =0 and {uj} and {Bj} are chosen to minimize
z{wk - R-lP}'E{Hk - R-IP} in the minimax sense for all k. Both of
these algorithms ((2.24) and (2.25)) force E{Wk} to converge more
rapidly than e.g., (2.17). Consequently, these algorithms seem to be
useful when equalizing high signal-to-noise ratio channels in a training
mode by sending a sequence of isolated known pulses.

Kosovych and Pickholtz [15] consider a successive overrelaxation
technique for training the weight vector of a transversal equalizer
during a training period using isolated pulses for the minimization of
the mean-squared error E{Ek}. Ek given by (2.12). With Fk and Pk
given by (2.15) and (2.16), respectively, the overrelaxation algorithm

considered by Kosovych and Pickholtz is given by

Vg =W =u, - ml-:k)'l(rkwk o (2.26)

where w > 0 is a "relaxation factor," Dk and Ek are, respectively,

diagonal and strictly lower triangular matrices, such that

+ +
Fk = Dk - Ek - Ek' Here Ek is strictly upper triangular, leaving Dk

to be composed of the diagonal elements of Fk' Denoting the ijth

element of a matrix A by (A) s (2.26) can be written as

1,3
Myydyp = Gy o = 0O 2 @ WY
+ Z (Fk)i.j( LR (Pk)i’l} : (2.27)

i=1
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Note that (2.27) does not require any matrix inversions. Kosovych and
Pickholtz [15] discuss methods for choosing w and compare conver-
gence rates of (2.26), (2.17), and (2.25) via computer simulations. They
also obtain a bound on the asymptotic mean square error in W, , assuming

k

that F Fz and P, , P are independent for all k # %.

k’ i

Recalling that from (2.3) it is desired to train the weight
vector, W, of a transversal equalizer to "optimize" the approximation
Y = a it is noted that most of the systems discussed so far have
assumed that p = 2N+ 1 and a = N. Qureshi [16] presents an adaptive
technique for choosing o and training W simultaneously. Kobayashi
[17] presents a more general technique using maximum likelihood estima-
tion and the Robbins-Monro stochastic approximation procedure to
estimate {an}, sample timing, and carrier phase. Walzman and Schwartz
[18), [19]) present a discrete frequency domain approach to the adaptive
transversal equalizer problem. Benedetto and Biglieri [20] discuss a
Kalman filter theory approach to the reduction of intersymbol
interference.

Finally, the importance of the Viterbi algorithm to sequence
estimation for data transmitted over dispersive channels should be
noted. Forney [21] introduces a receiver structure consisting of a
whitened matched filter, a symbol-rate sampler, and the Viterbi algorithm.
In [21) it is shown that this structure is a maximum-likelihood
estimator of the entire transmitted sequence. Qureshi and Newhall [22]
and Magee and Proakis [23] discuss adaptive structures which make use of

the Viterbi algorithm. Both of these schemes ([22] and [23]) include

an adaptive transversal filter having a weight vector, W, which is

trained by a stochastic gradient-following algorithm.
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B. Systems Proposed for Adaptive Array Processing

In this section, several systems which have been proposed for
adaptive array processing are reviewed. Data from an array of sensors
(e.g., hydrophones, seismometers, or antennas) can be "optimally"
processed to reject certain directional components of the observed field
and provide an estimate of some desired signal component ( e.g., [24]-
[30]). Adaptive array processing is used to compensate for varying
degrees of a priori statistical ignorance in such problems.

Consider an array of L sensors, each sensor followed by a tapped
delay line having M equally spaced taps. Denote the delay between
adjacent taps on each delay line by D, and denote by xz(t) the output
at time t of the zth sensor, £ = 1,2,...,L. Define the ML x 1

matrix X(t) by

X'(£) = (x) (£),%,(8),.00umy (£)) (2.28)

where x (t) = xz(t - (m-1)D) for all ¢ =1,2,...,L and for

24+ (m-1)L
all m=1,2,...M. Define the ML x 1 matrix W (the so called array

weight vector) by

W = (wl,wz....,wHL) . (2.29)
The output of the array is given by

y(t) = W'x(t) . (2.30)
It is assumed that X(t) can be expressed as

X(t) = S(t) + N(t) , (2.31)

where S(t) 1s a vector of signal components and N(t) 1is a vector of
noise and/or interference components. For the purposes of this section,

the goal of the array processor design is to choose the weight vector, W,
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so that y(t) will have certain desired properties. For example, W
might be chosen so that y(t) 1s a minimum mean-square error (MMSE)
estimate of some desired signal component, d(t).

Shor [31] considers a simple stochastic gradient-following
technique to maximize an estimate of the output signal-to-noise ratio
for a narrowband array processor. The technique given in [31] is
presented here for the more general array structure defined in the

preceding paragraph. Define

sout(t) = W'X(¢t), "ouc“) = W'N(t) ,

§' cWpoued,
S =T 5L sout(t)dt % (2.32)

and 1 kT 2
wow e (k-fl)'r nout(t)dt ; (2.33)

for k=1,2,.... In order to maximize sk/nk. Shor considers the

algorithm
/ 2 ka (t)
W, =W +A(s /n)d—= S(t) s (t)dt
kT 'k 3 TR out
2 ij (t) } (2.34)
- = N(t) n__(t)dty 2.3
nkT (-1)T out

for k=1,2,..., where A > 0. Shor advises using a "strong" target

signal with characteristics similar to the desired signal so that, when

the target signal is present, S(t) = X(t), and when the target signal is
absent, N(t) = X(t). Using a "strong" target signal during alternate
T-second intervals, and using an approximate version of (2.34), one

might hope that on the average, will tend to increase sk/nk for

“*




increasing k. Shor also considers an algorithm similar to (2.34) with
the factor (sk/nk) removed, and presents some computer simulation
results.

Lacoss [32] considers a simplified array processor for which M = 1,
i.e., the array output is simply a weighted sum of the data at the
output of the sensors. Lacoss assumes that xz(t) = g(t) + nl(t) for
£ =1,2,...,L; i.e., the signal component at the output of each sensor
is identical. Defining Rnn = E{N(t)N'(t)}, Lacoss considers the mini-
mization of W'Rnnw subject to the constraint that W'lL = 1, where 1L
is the L x 1 matrix 1L = (1,1,...,1)'. This criterion has been termed
"minimum variance distortionless look" because the output for such a

processor, y(t), is given by
y(t) = s(t) + W'N(t) , (2.35)

and the variance of W'N(t) is minimized. By using a projected

gradient technique, Lacoss shows that the algorithm

W= -uk(1-111')n W (2.36)

k+l k L L'L" " amk °’

for k = 0,1,2,..., converges to the desired optimal weight vector, W%,
provided that W;lL =1 and 2 uk = », An important property of the
k

above algorithm is obtained by noting that

. 2
R = E(X()X'(£)} = E(s"(O)}L 1} + R, (2.37)
so that
1 1 '
(I - i lLll',)Rxx = (I - i lLlL)Rnn % (2.38)

where it has been assumed that E{s(t)nz(t)} =0 for all % =1,2,...,L.

The importance of (2.38) is that Rnn may be replaced by ka in

TR T s

s
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(2.36) without affecting the convergence properties. Consequently, when

Rnn and/or Rxx are unknown, one may consider algorithms of the form
= - - .]; '
"k+1 wk uk(I i lLlL) Rkwk - (2.39)

where Rk is an unbiased estimate of ka, eig.,

Rk = X(kT)X'(kT) . (2.40)

With nw x'(kT)Wk, one might consider the algorithm

= - - l '
wk+1 wk uk(I i 1L1L)x(kT)yk 2 (2.41)

Note that Y and X(kT) are directly available from the processor, so
that no "target signal” is required. One problem which arises in the
implementation of algorithms such as (2.41) is that roundoff and quanti-
zation errors can accumulate, enabling wk to wander from the constraint
plane.

Frost [33] considers a more general constraint problem than Lacoss,
with an added feature that deviations from the constraint plane are
corrected for. Frost considers the minimization of W'Rxxw subject to
the constraints that

L

lei,,(m_ln =8, (2.42)

i

for all m=1,2,...,M. Frost assumes, as does Lacoss [32], that

xl(t) = g(t) + n!(t) for all ¢ = 1,2,...,L, so that the constraints
given by (2.42) imply a constraint on the frequency response of the
array to any signal component arriving from the same direction as s(t).
In obvious notation, the constraints given by (2.42) may be expressed

as C'W =g, where g' = (81’82""'8M)' A projected gradient algorithm,
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analogous to (2.36), for the problem at hand is given by

W =W -y

o1 = ¥ - # (T - CCO) 1c')nm‘w : (2.43)

k

for k = 0,1,2,..., with c'wo = g. Frost [33] adds the term
(XC'C)-I(g - c'wk) to the right hand side of (2.43) to correct for
deviations of wk from the constraint plane. Frost proposes the
following algorithm for the adaptation of W for unknown ka:

W

PR T C(c'C)‘lc')x(kr)yk + C(C'C)'l(g -C'w

s (2.46)

where b wLx(kT).

Winkler and Schwartz [34] propose a stochastic projected gradient
algorithm for finding the constrained optimum point for a concave or
convex objective function subject to nonlinear constraints. In [35]
Winkler and Schwartz consider a similar problem by making use of penalty
function techniques. Kobayashi [36] discusses the method of steepest
descent and the method of conjugate gradients with projection for the
iterative design of an array processor. Such techniques can be quite
useful for the off-line processing of array data. It is noted that the
adaptive technique proposed by Frost {(viz. (2.44)) can be deduced from
the steepest descent procedure given by Kobayashi [36] in much the same
way that (2.44) can be deduced from (2.43).

Widrow et al. [37] consider minimizing E{(d(kT) - y(kT))z} with
respect to W, where d(kT) is some desired array output. In terms of

obvious notation, define
A 2 2 ' '
E(W) = E{(dk - yk) } =0" - 2P'W+ W RV (2.45)

where 02 = E{di}, P = E{dkxk}, and Rxx = E{kai}. Noting that the




e 4

19

gradient of £(W) with respect to W 1is given by znxxw - 2P, a

reasonable algorithm for minimizing £(W) 1is

W = wk - “(Rxxw -P) . (2.46)

k+l k

Widrow et al. [37] consider the following stochastic version of (2.46)

for use when Rxx and P are unknown:
Wk+1 = Wk - uxk(yk - dk) . (2.47)

Noting that d, 1is the only quantity in (2.47) which is not directly

3

available (indeed, it is dk which one wishes to estimate), Widrow et al.
propose the use of a "pilot signal" having statistical properties similar
to dk' Suppose g(t) 1is the output of a pilot-signal generator, that
g(t) and d(t) have similar statistical properties, and that

d(t) = sl(t - 81) = 82(t - BZ) e sL(t - BL). Define

xi(t) = (8(t+81), g(t+82),-~" 3(t+BL)’

g(t+81-D). g(t+82-D),..., g(t+BL—D).

3(t+61 - (M-1)D), g(t+82 - (M-1)D),...,

g(t + BL - (M - 1)D)). (2.48)

The two-mode adaptation procedure proposed in [37] involves using (2.47)

with dk = 0 alternately with Xk = Xl(kT) and dk

mode adaptation procedure proposed in [37 ] makes use of the following

= g(kT). The one-

algorithm:

Wepp = W - w(X + X (D) (5f - 8GT)) (2.49)

where yg = Wl'((xk + Xl(kT)) . £

Griffiths [38] proposed an algorithm which does not require a pilot

signal. Assume that E{d(t)nz(t)} = 0 for all real t,t and for all
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£ =1,2,...,L. Then P = E{dkxk}'-E{dk(Sk + Nk)} = E{dksk}, so that P
is appropriately called a signal correlation vector, which is independent
of the noise statistics. Considering that if enough statistics are
known to be able to generate an appropriate pilot signal g(t), P is
probably also known, one is led to consider the following algorithm

proposed by Griffiths [38]:

Wepp = W - w0y, - P). (2.50)

Tack [39] has proposed an algorithm that is intimately related to
(2.50). Suppose the weight vector is to be trained so that Vi is an
MMSE estimate of the additive (nonpropagating) sensor noise nl(kT).

If {nl(kT)} is an uncorrelated or "white'" sequence with E{ni(kT)} = oi
and nl(kT) is uncorrelated with all other signal and noise components,
then the algorithm given by (2.50) with P' = oi(l,0,0,...,O) is
appropriate. The resulting array has been termed a spatial innovations

processor since the '"goal"” of making Y 2 white sequence implies that

a cancellation of all of the spatially correlated signal and noise fields
is being attempted. Tack [39] has shown that the resulting weight

vector can be a very good indicator of the "bearings' of all the propa-
gating components of the signal and noise fields.

While the previously discussed array processors are inherently
time-domain approaches, the next system to be discussed lends an inter-
pretation of processing in 'frequency-wavenumber space.'" The following
discussion is based on the presentation of Scharf and Farden [40]. 1In

[40] the treatment was limited to a linear (in~line) array of equally

spaced sensors. The discussion here applies to more general array

geometries.
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Let Eq(t,x,y,z) be a real-valued homogeneous random field for
q=1,2,...,Q. Let t denote time and (x,y,z) denote spatial coordi-
nates in some suitable cartesian coordinate system. Furthermore, assume
that the En(.,.,.,.) are zero mean and uncorrelated, i.e., that
B{En(tl,xl,yl,zl)gm(tz,xz,yz,zz)} =0 for all 1ty X 5% Y15Y 5022,
and for all n # m. Let Py = (xz,yz,zz), 2 =1,2,...,L, denote the

spatial coordinates of the sensors. Let

xl(t) = qglﬁq(t.pg) + ng(t) / (2.51)

for ¢ =1,2,...,L, where the nz(t) are real-valued zero mean wide
sense stationary stochastic processes and E{nl(t)nk(r)} =0 for all
real t,t and for all 1<k,2<L such that k # %. Suppose that each
of the Eq corresponds to a propagating plane wave. Then there exists
a set of constants {el,q: 1<0<L, 1<q<Q} such that Eq(t,pz)

= Eq(t-B2 q,pl). Consequently, (2.51) can be rewritten as
b

x,(t) = % 2

401 (t-Bz’q,pl) + nl(t) (2.52)

q

for ¢ =1,2,...,L. The constants {B2 q} are clearly functions of the
’
array geometry, propagation velocities, and the 'directions of propaga-
tion." The relationships of the constants {Bl q} to the concept of :
’ :

wavenumber should be clear. Define

" m -ijEE
2, (£ ,kT) = ] x,((k-1+Te "M , (2.53)
m=0

Lot ikt Suu iR ML e o L e £

for n=0,1,2,...,M-1, k=1,2,..., where fn = n/T, i.e., zz(.,.)

is the discrete Fourier transform (DFT) of xz(-). Defining
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M-1 mn
ng(F kD) = 1 m (k-1 + Hme 2N, (2.54) *
m=0

from (2.52) zz(fn,kT) can be expressed as

z, (f ,kT) = Z ? E ((k~1 + —)T = B p,J)e -J2my Pl +n (f »kT).
51 L
m=0 q=1
(2.55) ]
For T '"large enough," E{zz (f ,kT);i (f ,kT)} = 0 for all 0, ¥n
125 2y
2,.<L, so that for any criterion of optimality

2

and for all 1<£1 9S]
involving only second order statistics, one can process the data inde-
pendently for each fn, n=0,1,...,M-1. The — is used to denote complex

conjugate. Furthermore, for large T,

mn
. z, (£ ,kT) = 2 § £ (k-1 + DT,p e 32n(E By ot N
m=0 q=1
+ ng (£ ,kT) . (2.56)
Defining
e ijEE
Yo (kD) = Za ((k-1 + )T,pl)e Mo, (2.57)
m=0

one easily obtains that

—12wf B
2, (£_,KT) = qgl Yoy okDe LN ng (£ kD) . (2.58) 7
Define
2, (£) = (2, (£ ,kT), oo, 2 (£ ,KT)) (2.59)
N (ED) = (g (£ LKD), ooy n (£ ,KT)) (2.60) if
and 'Bq'(fn) . (ejZansl.q’ ejzwanZ,q’ o ejznf BL,q) s {
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Then

zk(fn) = qgl yq(fn,kT)Dq(fn) + Nk(fn) . (2.62)

Suppose that a linear MMSE estimate of yl(fn,kT) of the form
§1(fn,k1) = w'zk(fn) is desired. It is easily shown that the desired

weight vector ,W*, is given by
-1
U*(fn) Rz (fn)Pl(fn) ’ (2.63)

- 3 ' = 7 =
where Rz(fn) E{Zk(fn)zk (f“)}, Pl(fn) E{yl(fn,kT)Zk(fn)}
2 = 2 i 2 i
al(fn)Dl(fn), and oq(fn) = E{|yq(fn,kT)| } for q = 1,2,...,Q. It
is of interest to note that Rz(fn) can be expressed as

Q
2 PR :
R, (f) = on(fn)l + qu oq(fn)Dq(fn)Dq(fn) . (2.64)

where ci(fn) = E{lnz(fn,kT)IZ}. The Sherman-Morrison matrix inversion
lemma [41] can be applied Q times to (2.64) to show that W*(fn)
can be expressed in the form

[ B
= f .
Wk (£ ) qzl quq( ayd (2.65)

where the yq are complicated functions of oi(fn), Oi(fn)' and all
= 2

pairs of inner products Dq(fn)Dp(fn) [40]. Consequently, yl(fn‘kT)

can be expressed as

§y (£_,kT) = q?-l YO EDLED (2.66)

The operation B;(fn)zk(fn) has the interpretation of being the output of

a discrete frequency domain conventional beamformer steered to provide

a distortionless look at Eq'

——
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Suppose for the moment that the Dq(fn) are known. Defining

D' = (@, (£,), Dy(e), won s DED) (2.67)

e P! = (rpaYpeeeeatg) (2.68)

(2.66) can be rewritten as

§1(fn,kT) = r'Dzk 3 (2.69)

where the notational dependence of D,I', and zk on fn has been
dropped. The operation DZk can be interpreted as a spatial DFT, as

discussed in [40]. Ore may now pose the MMSE problem as follows: find

I' such that

e(r) = E{|r'Dz, - v (£_,kD)|?) (2.70)

k

is minimized. Invoking the orthogonal projection theorem, I'* 1is seen

to be the solution to

e ot
DRzD r DP1 o . (2.71)

A steepest descent solution is readily found as [40]

= - D ' -
rk+1 Fk ukD(RzD rk Pl) . (2.72)

A stochastic version of (2.72) that can be implemented when Rz is
unknown is

Fpog %0y = ukn(zkyk - Pl) s (2.73)

where ™ zib'rk. In case the Dq are unknown, one may implement
several strategies, as mentioned in (40].

Sl i i
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C. Critique

In this section, it is shown that most of the algorithms discussed

in Sections II-A and II-B can be written in the form

wk+l = wk s uk(Pk - kak) o (2.74)
where wk is a real p x 1 matrix, {"k}:=1 is a sequence of positive
constants, Pk is a real p x 1 random matrix, and Fk is a p x p real

symmetric random matrix. Detailed convergence results for algorithms
that may be cast into the form of (2.74) are presented in Chapters III
and IV. It is also shown in Chapter III that (2.74) is a special

case of the multidimensional Robbins-Monro stochastic approximation
procedure. The purpose here is to show that the algorithm given by
(2.74) 1is sufficiently general to ensure the wide applicability of the
convergence results presented in Chapters III and IV.

It is convenient to start by considering a réther general MMSE
fiitering problem, and establishing a hierarchy of adaptive algorithms
for varying degrees of a priori statistical ignorance [42]. Let
{Sk} and {Nk} be jointly wide-sense stationary RP-valued (Rp is used
to denote p-dimensional Euclidean space) random processes. Define
xk = Sk + Nk’ and assume that E{Nk} =0 and E(Skyi} =0 for all
k,%. Suppose that it is desired to estimate some real-valued linear

function of Sk, say 8., by a linear MMSE estimate of the form

P w'xk. Define
EW) = (s, - 307} = E(s2} - w'P + w'R_v , (2.75)

where P = E{skxk} = E{sksk}, and Rxx = B{xkxi}. It is assumed that

RXx is positive definite.

5
{
!
|
}
{




A recursive method for computing the w = g Rxx P that minimizes

E(w) 1is the gradient descent algorithm:

vk+1 . uk(RXxw o 1) S (2.76)

where My > 0. This algorithm provides an alternative to computing

wo = R;i P. The steepest descent algorithm is easily obtained from

(2.76) by choosing u, to minimize &(w,..). The steepest descent

k
algorithm is given by (2.76) with [43]

k+1

- ' -
e (Rxxwk P) (Rxxwk P) el
= (] i . .
k (Rxxwk P) Rxx (Rxxwk P)
Note that by letting Pk =P, Fk = Rxx’ and W, as in (2.77), (2.74)

becomes the steepest descent algorithm. In order to make use of
gradient descent algorithms such as (2.76), Rxx and P must be known
a priori. Efficient techniques for solving Rxxw =P for w= w, are
treated in Chapter V for several special forms of RXx'

In case the "pilot vector," P, is known a priori but Rxx is

unknown, one may consider stochastic versions of (2.76) such as

Hk+1 = Wk = uk(kaiWk =P) (2.78)

Note that with appropriate interpretations of o xk. and P, (2.78)
is the algorithm (2.50) proposed by Griffiths [38], and that with

= ' -
Fk xkxk, Pk P, (2.74) becomes (2.78). Furthermore,

k

]
XX, (2.79)

vry
l
< 415

L=k~M+1

and P, = P 1in (2.74) is also a reasonable algorithm to consider in

k

this case.

o ik i

. kiiiontedl




Now, consider the case for which neither Rxx nor P 1is known
a priori. For this case, one may consider algorithms of the form
= - ' -
wk+1 wk uk(xkkak skxk) 5 (2.80)
With suitable interpretations of M2 xk, S, (2.80) is the algorithm
(2.47) proposed by Widrow et al. [37], or algorithm (2.22) proposed by
Niessen and Willim [10]. With Fk and Pk given by (2.15) and (2.16),
respectively, (2.74) becomes the algorithm (2.17) proposed by Gersho [9],
or algorithm (2.23) proposed by Schonfeld and Schwartz [13].
Other algorithms, although not fitting into the MMSE philosophy or
directly into the stochastic gradient following philosophy, can, in
i 1, 4
some cases, be cast into the form of (2.74). With Fk = (I - i 1L1L)Rk'

where E{Rk} = Rxx and P, = 0, (2.74) becomes the algorithm (2.39)

k

= * =
proposed by Lacoss [32]. With Fk (Dk b Pk (Dk

and M = w5 (2.74) becomes the algorithm (2.26) considered by Kosovych

o1 =i
- - *
mEk) F wEk) Px,

and Pickholtz [15]. With

- (AU tey =L U
Fo = xkxk c(c'c) ¢ (xkxk + 1) , (2.81)

and P, = C(C'C)-lg, (2.74) becomes the algorithm (2.44) proposed by

k
Frost [33]. The algorithms proposed by Lucky [ 7] and Shor [31] do not
fit the class of algorithms given by (2.74).

A simple trick can be used to put complex-valued algorithms such as

(2.73) into the form of (2.74). Consider
Pk+1 = Fk - uk(er‘k -P) , (2.82)
where Rk is Hermitian non-negative definite. Using the superscripts

r and 1 to denote real and imaginary parts, respectively, it is

easily shown that
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Consequently, with some obvious definitions, (2.82) (and hence (2.73))

can be put into the form of (2.74), with “k real, Fk real and symmetric,

and Pk real. Furthermore, it is easily shown that the resulting real

symmetric Fk is positive definite if and only if the Hermitian Rk

is positive definite.




III. EXISTING CONVERGENCE RESULTS

Most of the adaptive signal processing algorithms discussed in

Chapter 2 are sequential algorithms which can be written in the form
wn+1 e Nh ™ (Pn - ann)’ (3.1

where E(Fn} =R and E{Pn} = P. This algorithm can be viewed as
a stochastic gradient-following algorithm or as a stochastic approxi-
mation to the solution, w = Wy of the equation

Rxx w = P. (3.2)

This chapter is devoted to a review of existing results on the conver-

gence properties of algorithms similar to (3.1).

A. Strong Convergence Results for Stochastic Approximation

In 1951, Robbins and Monro [ 5] presented a sequential technique

for estimating the solution, 6, of the equation
M(x) =a, (3.3)

where M(x) 1is a monotone real valued function defined for all real x
and (3.3) is assumed to have the unique solution x = 6. 1In the Robbins-
Monro procedure it is assumed that the nature of M(x) is unknown, and
that corresponding to each real x is a random variable Y(x) with

distribution function Pr[Y(x) < y] = H(y|x) such that
M(x) = [y dH(y|x) . (3.4)

The procedure starts with xl =x; an arbitrary real number and pro-

ceeds via the recursicn

29




30

X4 =X + an(a - Yn) ? (3.5)

where Yn is a random variable having the conditional distribution

Pr[Yn 5_y!xn = xn] = H(ylxn), and {an} (n > 1) 1s a sequence of

positive constants such that

za-w Xaz<w_ (3.6)
n=1 ° : n=1 "

It should be obvious that (3.1) is a multidimensional version of (3.5).

Under the additional conditions that M(x) is nondecreasing,

Qﬂéil >0, and Y(x) 1s bounded with probability one for all
x=0

real x, Robbins and Monro [ 5] proved that 1lim E{(Xn-e)z} = 0.
nreo

Since the pioneering work of Robbins and Monro, a great deal of :
work has been done on establishing conditions for which schemes similar ?
to (3.5) converge. Kiefer and Wolfowitz [ 6] considered the problem
of estimating the value of x = 6 such that M(x) is a maximum.

Blum [44] proved almost sure (a.s.) convergence (i.e., Pr[ii: xn-e] =1)
for both the Robbins-Monro and the Kiefer-Wolfowitz procedures under less
restrictive conditions than those in [5] and [6]. In 1954, Blum [45]
presented multidimensional versions of both the Robbins-Monro and the
Kiefer-Wolfowitz procedures, and proved a.s. convergence for each.
Dvoretzky [46] presented a general stochastic approximation procedure
which contains the Robbins-Monro and the Kiefer-Wolfowitz procedures as
special cases. Dvoretzky proved both mean-square (m.s.) and a.s. con-

vergence for his procedure. Wolfowitz [47] presented a vastly simpli-

N

fied proof of Dvoretzky's Theorem. In 1959, Derman and Sacks [48] gave 4

a simple proof for the a.s. convergence of the multidimensional version
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of Dvoretzky's procedure. The interested reader is referred to the
excellent review papers by Schmetterer [49,50] and Sakrison [51] for
a more complete account of the developments in stochastic approximation.
Essentially, all of the above mentioned works contain a common
assumption which, for our application to multidimensional adaptive signal
processing, severely limits the effectiveness of the results. The assump-
tion under scrutiny is the following: in (3.5) it is assumed that the
conditional distribution of Yn given xn-xn coincides with the dis-
tribution of Y(xn) for all real fixed parameter values X In par-
ticular, this assumption implies that E{Ynlxn- xn} = E{Y(xn)} (-H(xn)).
In terms of the algorithm (3.1), this would require that E{FnWEPnIWn-v}
= E{an - Pn}, for all fixed (parameter) w in p-dimensional Euclidean
space, RP. That this is an unreasonable condition can be seen by noting
that wn is a rather complicated function of wl, “2’ weieg wn-l as
well as Pl’ Pz, SO Pn-l’ and Fl’ F2, ety Fn_l; and that, in general,
{Fz}:-l is a correlated sequence. Loosely speaking, given the value
that the random vector Wh takes on, one is also given some "information"
about what values the random matrix Fn is allowed (and possibly also
Pn). It is noted that several papers state an alternate assumption
which is similar to that above: the conditional distribution of Yn
given x1'“1""'xn'*n coincides with the distribution of Y(xn) for
all real fixed parameter values X . It is also noted that several
stocl. stic approximation convergence theorems require a weaker condi-
tion with the work "distribution" above replaced by "expectation." In

practice, such conditions essentially require that either {Yn} is an

independent sequence for the distribuiton condition or an uncorrelated
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sequence for the expectation condition. Clearly, such conditions severely
limit the applicability of the results. Surprisingly, very little has
been done to alleviate the restriction due to this assumption. The
results of Derman and Sacks [48] will now be discussed to suggest a
possible approach for obtaining a more applicable result, as well as
to show how the algorithm (3.1) is related to the general stochastic
approximation procedure of Dvoretzky.

Derman and Sacks [48] have provided a simple proof to the
following multidimensional version of a theorem originally stated by
Dvoretzky [46]. The absolute value signs are to be interpreted as the

p-dimensional Euclidean length.

THEOREM. [Let {Xn}.. {Tn(XJ,...,Xn)}, and {.Yn(XJ,...,Xn)}(ng_l) be

p-dimensional random vectors with X 7 arbitrary and

Xn+1 = Tn(xz,...,xn) + Yn(xz,...,Xn) : (2.7)
Assume that

E(Y, |Xp..., %) %50, (3.8)

- -]

1. BT |2 < -, (3.9)

n=1

|7, | < maz(a, (148))|X | - v,) , (3.10)

where {an}, {Bn}’ and {Yn} are sequences of positive numbers such

that

an > 0’ X Bn < ® Z Yn = o , (3.11)
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Making use of a technique suggested by Dvoretzky [46], algorithm

(3.1) can be written so that the above theorem can be applied. Defining

(3.1) can be written as

Vn+1 = (I - unPn)Vn + unCn , (3.13)

where

Cn = Pn - Fn v, - (3.14)

Now, defining
Yn(Vn) = un((Rxx - Fn)vn + Cn) (3.15)

and

Tn(Vn) = Vn - Rxx VIS (3.16)

(3.13) becomes

Vn+1 = Tn(vn) + Yn(vn) v (3.17)

Define the matrix norm of a pxp matrix A by

[la]| = sup |Aq] , (3.18)
lq|<1

which for A real and symmetric yields
[1A]] = max |2 Q)] , (3.19)
i

where {Ai(A)}i_l are the p eigenvalues of A and q 1is a p-element

column vector.

{
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© ®
Let {un}n-l and {nn}n_1 be nonincreasing sequences of positive

- (-]
numbers such that M + 0, n, + 0, nzl un = o and nzl o

Since Rxx is assumed to be positive definite, there exists an n,

~1
such that for all n 1_no g e R Amin < » _  where Amin = min Ai(Rxx).
For all n>n_ , and for all uce RP, ITn(u)| = |u - My Rxxul < |ul.
[T - Hy Rxxll < |u]l@ - Wy Amin)' For all |u| > N, Iul(l-un Amin)
< |ul - Mo Aniq Ny Whereas, for lu| < no» Iul(l-un A i) S0
(l-unxmin). It follows that for all n >n_,
IT (W] < max(n Q- A0, Jul =w A om0 (3.20)

so that, with Xn = Vn, a = nn(l = My Amin) i Bn =0, and Y

M (3.7), (3.10), and (3.11) are satisfied. The following

n Amin n’

corollary has thus been established.

COROLLARY. Let Vh, C, Y, T be p-dimensional random vectors given

.
by (3.12) to (3.17). Let {un}:=1 be a nonincreasing sequence of posi-
tive numbers with W, >0 and J W, = ©. Assume that (3.8) and (3.9)
a.s, n=1

are satisfied. Then IVhI > 0.

The difficulty with the above corollary is, of course, the establishment
of (3.8) and (3.9). Condition (3.9) can be deleted by requiring that
E{Iulen(u)lz} be uniformly bounded for all n > 1 and for all ue Rp,
and that nfl uz < ®» , This uniformly bounded condition will be dis-

cussed in more detail later. Condition (3.8) has the same limitation

mentioned previously. Dvoretzky [46] shows that (3.8) may be replaced by
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L
Z sup IE{Ynlx

..,xn}l < o (3.21)
n=1 xl....,x

3ok
n

or by the condition that each element of

nglE{Ynfxl....,xn} (3.22)

be uniformly bounded and convergent for all sequences XysXpreeesX seees
Unfortunately, conditions such as (3.21) or (3.22) are extremely dif-
ficult to verify in practice.

The method of proof of Derman and Sacks [48] can be modified to

obtain yet another alternative to (3.8). Let P =P be
n n,xl,xz,...,xn

random orthogonal transformations such that PnTn = (|Tn|,0....,0)' and

= ! =
define Zn PnTn, where Zn (an,an,..,,an). If

2
m Zn1(1+8n)

al Zan + Bn

and 2 4
m Zn1(1+en)

n=1 (Zan+8n)2

converge a.s. to random variables as m + «, then condition (3.8) of the
theorem can be deleted and the theorem remains true. Although this may
suggest a reasonable approach, the establishment of these conditons
appears difficult, even for the special case considered in the corollary.
Also, condition (3.9) or its (stronger) alternative of uniform bounded-
ness of E{Iu;lYn(u)lz} is somewhat restrictive. In any case, this
approach will not be pursued here.

Sakrison [52] presents a continuous Kiefer-Wolfowitz procedure

and proves mean-square convergence for an a.s. bounded process and a

i
-
¢
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requirement on the rate at which the minimum mean-square prediction
error approaches its asymptotic value. Sakrison [51] suggests that this
condition is applicable to the Robbins-Monro procedure. More recently,
some convergence results for algorithms of the form of (3.1) with

g constant have appeared.

B. Weaker Convergence Results for Stochastic Approximation

Daniell [53] investigates a kind of mean-square convergence for
algorithms similar to (3.1) with un = u = constant. In fact, letting

D 99 i

el be a sequence of p-dimensional random vectors, uy = u, and

Fn = XnX;, (3.1) is precisely the algorithm considered by Daniell.
Rewriting (3.1) in the form of (3.13), with Cn given by (3.14),

Daniell [53] proves the following theorem. The trace of a matrix A is

denoted by tr{A}.

THEOREM. Define Ai = XiXé - R&x' Suppose that (i) there exists a
sequence of positive numbers {nk} eonverging to zero such that for

every pair of positive integers k and 1

1+k

Elr ) NP o (3.23)
g=i+1 Y
14k
Bl Y all?ren? s (3.24)
g=l+1 7

(i1) there exists a constant a, > 0 such that if for all integer ?

1 > 1, then

. 3.25)
E{ngl 140 seeesky_13Cp g} <o (
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and e } < « $ (3.26)

H‘Ixél IXI'C i-1°“3-1 0

g

(111) there exists a sequence of positive real constants (ak}
eonverging to zero such that if for all integer i1 > 1 and for all

integer k, L, M satisfying 7i<i+k <M < L,

’ [
triE4; 4, |X1’01"“’Xi'c«;} - E{a, A} < a 3 (3.27)
and (iv) there exists a positive constant B such that
E{|Ci|2} <5 (3.28)
and E{1X£]4 lcilg} oL e (3.29)

Then for all §&§ > 0 there exists a wu* > 0 such that for all
0 < u < u* there exists a positive integer ku(é) such that for all

k >k (8)
u
2
E{IVkI V<8 . (3.30)

The kind of convergence obtained by Daniell is clearly weaker than
mean-square convergence; however, by replacing u with a nonincreasing
sequence of positive constants {ul}z-l converging to zero, it seems
reasonable to conclude that the proof could be modified to obtain mean-
square convergence. For applications which require the algorithm to
track slowly time varying parameters, a fixed step size seems to be a
reasonable as well as a widely used technique.

Senne [54] performed a simulation study of an algorithm similar to
that treated by Daniell, and noted that when the process {xk) is
correlated, a bias is introduced which increases with step size, u. An

analytical justification for this can be obtained by taking the
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expectation of both sides of (3.1) to obtain

E{Wn+1} = E{Wn} + un(P-E{Fan}) . (3.31)

Suppose that E{wn} - and that M, = M If {Fn} is a correlated
sequence, then Fn and wn are also correlated so that E{ann} + P,

and hence E{Wn+1} # Vo From this simple argument, it should be
concluded that in order to have any hope for the algorithm to even be
asymptotically unbiased, the condition that L3S + 0 1s essential. It

is interesting to note that if {un} is a sequence of positive comnstants

converging to zero and the variance of each element in the correction

vector un(Pn-ann) is decreasing with increasing n so that the vari-
ance of each element of wn will also be decreasing, Fn and Wn will
"decorrelate."

The main issue here is to determine the limitations of the
assumptions made in Daniell's theorem, i.e., to determine the types of
correlated processes {xn} for which the theorem is applicable. Daniell
[55] provides several examples of processes which satisfy the conditions
of the above theorem; however, for the 'correlated cases' considered, it
is assumed that the process {Xk} is bounded. Conditions (3.25) and
(3.26) indicate that this bounded assumption is essential for the
application of the above theorem.

Kim and Davisson [56] treat another algorithm which fits into the
framework of (3.1). Let {sn} and {xn} be jointly stationary ‘
M-dependent scalar stochastic processes. A sequence of random variables |
(yn} 1s said to be M-dependent if for all index sets I , J , with

min |n-m| > M, the two sets of random variables {y :neI_} and
non
neIn,meJm

{ym:meJm} are statistically iudependent. Define




1 (n+1)K-1
1), let P = - ) s X,

' = O
X (xn’xn-l' *n-p- n-lg meg P

1 (n+1)K-1

F == X X X', and u_ = p = constant. Substituting into (3.1)
n K mm n

m=nK
yields

(n+l1)K-1
= X!
W =W+ /K mZnK X (s,-X'W ) . (3.32)

Kim and Davisson [56] show, under the above assumptions, that
E{|Wn - wolz} can be made arbitrarily small for n 1large enough by
choosing p small enough and K large enough. Although not explicitly
stated by Kim and Davisson [56], their analysis also requires the exis-
tence of all fourth-order moments for both {sn} and {xn}. The
results of Kim and Davisson given above can likely be modified by re-
placing u with a nonincreasing sequence {un} of positive constants
converging to zero to obtain mean-square convergence.

Schmetterer [50] presents the following theorem, a result which is
quite similar in nature to the results discussed above of Daniell, and

Kim and Davisson.
THEOREM. Let a, be a sequence of positive real numbers, satisfying

] a;== Let x and y be p-dimensional random vectors such that
i=1

=2 -ay (3-33)

for every n > 1. Furthermore, for every n > 1, let Mh(-) be a
Borel measurable mapping from F to RP. Assume that
E{lyn - Mh(zn)lz} existe for every n > 1, and that there existse a real

C > 0 such that

ST N PP e .




ﬁ(lyn - Mn(xn)lgl GO R e B (3.34)

Furthermore, suppose that there exists a K > 0 which satisfies

S (3.35)

such that for every n > 1 and meRp, the inequality

|z - anMn(x)l < (1-Ka) || (3.36)

holds. If E{|x1|2} exists, then E{lxnlz} exists for every n > 2.

Furthermore,
Btz | 2012 < 2T 4 (Bl P2 - 01/2"_1)7;5 (1-Ka) . (3.37)
e
It follous that
Tim (E{I:cnlg})l/z e i (3.38)

n-+o
Although condition (3.34) of the above theorem severely limits its
applicability, some comments on the above theorem are in order. First
of all, note that no conditional expectation or conditional distribution
restriction is made. Secondly, (3.37) gives a bound on the mean norm-
squared error for all n > 1. Hence, if the above theorem could be
applied in a practical situation, it would be quite useful. Noting that

(3.13) can be written as

v = Vn -pu (FV-C) , (3.39)

n+l n nn n

with Cn = Pn - ano, and substituting X = Vn, an = un, yn = ann - Cn,

(3.33) results. Letting M“(v) = Rxxv for all veRp, (3.34) requires

that there exist a C > 0 such that

P
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2
E{|ann == Rxxvnl Jo@ umEY G (3.40)

Since Rxx is assumed to be positive definite with minimum eigenvalue
A mins K = A\pgyn, and (3.35) establish (3.36). Apparently, (3.40) is
difficult to establish unless Vn is uniformly bounded (in n) with
probability one, thus suggesting a possible application to truncated

algorithms. That is, suppose v, is known a priori to lie within

some closed convex parameter space P, and consider the following

truncated version of (3.1)

Wn+1 = [Wn + un(Pn-Fan)]P s (3.41)

where (x]P =x 1if xeP, and [x]P is the boundary point of P closest

to x 1if x¢P. Defiuing Bwb = {x:x+w°ep}, and with Vn = Wn -V
(3.41) becomes

= - + -
Vv 1 [v u (FV Fw P )]P
Yo

. (3.42)

Clearly, this algorithm is a.s. uniformly bounded, and can be shown to
satisfy (3.40). Unfortunately, certain analytic difficulties arise when
attempting to establish (3.36) for this algorithm. A result similar to
the above theorem of Schmetterer for algorithms such as (3.42) would be

highly desirable.

C. Critique

In this chapter, several of the existing convergence results

applicable to algorithms having the form of (3.1) have been reviewed in
detail. Several suggestions have been made as to how existing results

might be modified to obtain reasonable conditions for which wn »> v in
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some meaningful probabilistic sense when the sequence {Fn) (and
possibly also {Pn}) is correlated.

In summarizing the state of existing stochastic approximation
results, it can be said that the conditions imposed by Robbins and Monro,
Dvoretzky, and Derman and Sacks, for example, employ ingenious mathema-
tical constructs to permit general applicability of stochastic approxi-
mation results. From a practical point of view, however, it cannot be
emphasized too strongly that their conditions are easily established for

(3.1) only when {Pn - an}°° is an independent sequence of RP-

n=1

valued random variables,where w 1is a fixed parameter. Consequently

the existing results are not well-suited to the analysis of structures

that must be adapted in correlated enviromments. As repeatedly mentioned
previously, the restrictive assumptions are the "conditional distribution,"
or the "conditional expectation" assumptions. The only results (known

to the author) not making these restrictions are those of Daniell, Kim

and Davisson, and Schmetterer, mentioned in Section III-B. 1In the next
chapter, easily verified conditions will be established for which Wn

as given by (3.1) will converge a.s. to LA These conditions will

permit us to relax the "conditional expectation" or "conditional distri-

bution" assumptions of existing theorems and prove convergence in cor-

related environments of practical interest.
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IV. NEW CONVERGENCE RESULTS

In this chapter, new,easily verified conditions are established
which ensure the a.s. convergence of wn to w as given by (3.1).
Section IV-A contains the main results of this dissertation. The proof
of the theorem relies heavily on the techniques presented by Albert and
Gardner [57]. The proof of the practically useful result, Corollary 2,
makes strong use of the results of Serfling ([58] and [59]). In Section
IV-B the results of Section IV-A are applied to the specific algorithms
treated in Chapter II, providing analytical justification for existing
and proposed applications of these algorithms. In Section IV-C, a
highly specialized form of (3.1) is treated which seemingly suggests a
"maximum convergence rate" for certain algorithms. Open issues
regarding the convergence properties of algorithms fitting the framework

of (3.1) are discussed in Section IV-D.

A. Almost Sure Convergence Results

As shown in Chapter III, the algorithm

LR S R O (4.1)

can be written in the form

vn+1 A unFn)vn * uncn : .2}
where Vn = Wn L AL (4.3)
v «Rip | (4.4)

o XX
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E(P )} =P . (4.7)

It 1is assumed that ‘xx is a real symmetric positive definite p x p
matrix, “n and Pn are elements of Rp, {"n} is a nonincreasing
sequence of positive constants, and that {Fk}:-l is a random sequence
of real symmetric non-negative definite p x p matrices. Defining

for {Ail a sequence of p x p matrices

k v A B =y A K4
A - Ay &1 w1 Ay , A
1=g I, 1f k. < &3
and iterating (4.2), one obtains
n § n
' = I (I -uF )V, + C I (T-pPI))yuwt . (4.9
n+l k=1 kk''1l k=1 j=ictl 3.4 k'k
Defining
m
= II (I -qu,F 4.10
le 3-2( uj j) ’ ( )
n
An = kzl Qk+1,n uka 3 (4.11)
(4.9) becomes
v (4.12)

ntl an v1 5 An *
Recall that the matrix norm for a p x p matrix A is defined by

l|all = tlml‘i* |ax| , x & (4.13)
x| <1

which, for A real and symmetric coincides with




R T T

AT

45

l[A]l = mnx(lki(A)l} :

1 ef1,2,...,p}

(4.14)

where {Ai(A)}z_l are the p eigenvalues of A. Denote the minimum
and maximum eigenvalues of A by Amin(A) and Amax(A), respectively.
With the above notations and definitions ((4.1) -~ (4.14)) established,
which will be assumed throughout the remainder of this section, the

main result of this dissertation can now be stated.

THEOREM. Suppose that the following assumptions (including the
structure implied by (4.1) - (4.14)) are satisfied:

Al) (uk} 18 a nonincreasing sequence of positive constants

converging to zero such that whenever

lk-zl S ”.’ u’/uz = hN< en’ and kzl uk =490

A2) ukIIFkII L 0as k=,

a3) n1 ¥ p

A4) there exists a random vector S e ®  such that

n
S = z u,C
L kK'k

QL5 as n + o, and

a.e.
45) |F (S -5, )] "% 0 a8 n -+

Then |V, | 4P 0 a8 n+> =

Regarding assumptions Al through A5, assumption Al is seemingly

the only assumption similar in spirit to other stochastic approximation

results, and is easily satisfied by My = 1/n, for example.

Ry e
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Assumption A3 is the only other readily recognized assumption, and
can be interpreted as a kind of ergodicity assumption. Indeed,
assumptions A2 through A5 involve the a.s. convergence of sequences
of random variables, and the conclusion of the theorem is the a.s.
convergence of still another sequence of .andom variables. The prin-
cipal advantage in using such an approach is that assumptions A3 through
A5 are in a form suitable for (but not limited to) application of the
results of Serfling ([58] and [59]). The end result is sufficient
conditions on the "decay rate" of the autocovariance functions of the
sequences {Fk} and {Pk} which imply A3 through A5. Examples in
which these results are applied to the algorithms discussed in
Chapter II are given in Section IV-B.

As mentioned previously, the proof of the above theorem relies
heavily on the techniques of Albert and Gardner [57]. The proof is a
direct modification of the proof of Theorem 6.3 of [57]; however, the
algorithm treated in Theorem 6.3 of [57] is quite different from (3.1)
and the assumptions above are seemingly less restrictive. Before
proving the theorem, several useful lemmas will be established. Lemmas 1
and 2, which are similar in nature to Theorem 6.1 of [57], make use of
assumptions Al, A2, and A3 to show that llanl 880 as n-+=. The
assumption that each Fn is symmetric and non-negative definite can
be relaxed by applying Theorem 6.1 of [57]; however, for adaptive signal
processing applications, Fn is almost always some form of a sample
covariance estimate, hence, the simplification resulting for symmetric
Pn seems worthwhile.

LEMMA 1. If A1-A3 are satisfied, then there exists a sequence of

integers {vk} with I=v

1<\)2<\’3<n-o 8u0h that’ mth pk - vk+1 . vk’
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Vg < n so that "Kini"l(ﬂ"l‘ Then j
1
2 .
.= N (I = )Q ¥ (4.16) ;
1n 1,v,-1 3
3=vg SRR
_and hence,

4/
Jk = {vk,vk+1,...,vk+1—1}, and k = 1.2, 000y (T} Pmin < Py < P < %
. “1 , - o o0 .
(i2) pp~ A . (] Fo) = o Bl 0. (4i1) pk beo ) F )=Yka 8 y<m,
ey hed”

and (iv) there exists a § > 0 8uch that o a'f' 8. The sequences
{vk}, {pk}, {uk}, and {yk} may all be random sequences depending on

the particular realization of the sequence {Fk}.

PROOF. Define

i E
R = — el ’ (4.15)
A

Let € > 0 be given such that 0<e<A (R ). Assumptions Al-A3 imply

that for any fixed £{0,1,2,...}, lim R’“ % R . It follows that

L a.s.
%&2 Amin(Rn) min(R ). Hence, it follows that there exists an n,

(possibly random) such that (R_.) -2 (Rz )| e €; thus
min n,

IAmin XX

a,s. L
0 <A nR)-€™? Amin(an). Since n, is finite and 2 is arbitrary,
(1), (ii), and (iv) follow. A similar argument applies to (iii). Q.E.D.

LEMMA 2. If A1, A2, and A3 are satisfied, then ||Q,, || ¥ 0 as

n -+ o, ;
PROOF. It follows from A2 that there exists a random variable
' a,s.

M, 1<M<= such that sEplqutFk| M. Keeping the same notation as

in Lemma 1, for any n, let K = K(n) be the largest integer such that
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n P
oy b« Qv - wr dl-lla [+ SeB ™ Y g II-
In i 1 Loy -1 1,y~-1

Consequently, it suffices to show that ”Q1 i -lll 380 as K+ =
’
K

with n over some subset of the positive integers. Noting that

g-1 k4171 i
Q My = 0 n (I -u F ) ' g Q .
1’\)K 1 k=1 j=\)k j j k=1 \’k) vk""l 1’ (4.18)
and defining T = Q AN
ke gk
K-1
b N (4.19)
Rale=h ey E
Expressing Fk as
Visp 1 ; :
Py ol (T =y Bolyow = o ¢ hoci) g
5 % i 3.4 B )
21’22€Jk
Py
_1,4
+ qZ3 ; >§ >S.T32 uzluzz...uzszlez...ng ’ (4.20)
12 q
21’12,--.,1q€Jk
it follows that (for uv < 1)
k
P
Ilr|lai3.1—u A (XF)"'XUq Xq(zF)
k Vikl 1 "min jeka q=2 Yk max jEka
P
i | P & u2 z ® Y)q G
s = i o :
vk"‘l 1kk \’k q_z max

from Lemma 1. From Al and Lemma 1, there exists a positive integer

ko (possible random) such that for all k > ko’
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a,s. 1
My aPoga & 2" exp{-5m
Vi+l 1"min 2 Vit

a,s. 1
BE N "¢ -5 ,~1Pntn 8

(4.22)
since 1 - x < e-'x for all real x. Hence, there exists a random

variable M, such that for all K > ko'

1
a.,s. =3
llol’vk_lll £ u Iz |
(o]
Bs8-iy  akpl-tp B Kil u ¥, (4.23)
= 1 2 "min k=ko vk+1—l

It follows from the above and Al that [lQ,_[| *+°* 0. q.E.D.

LEMMA 3. (Albert and Gardner)[57). Let {Ak} be a sequence of

square matrices. Then for all 1<k<n and n>1,

n n n
1 00 (I-A41A,=I- T (I-A4A. (4.24)
d=k i=j+1 4 i=k =

LEMMA 4. (Toeplitz Lemma){60]. If x, > £, and the coefficients aW
satisfy (i) for fixed p > 1, anp +0 as n + o, (i1) there exists
n
a K such that for all n>1, | |a .| <K, and
7 e

n

n

(iit) § a.=A +a as n+w, then z*= Y g x. +af. (4.25)
gug i R TR

PROOF of THEOREM. Equation (4.12) expresses V o+l as

a,s
== & .
v 'l anvl + An It has been shown in Lemma 2 that ”an” +" " 0.

It remains to be shown that IAnl 83%* 0. From (4.11) and A4, with

SO-O and Qn+ =1,

1,n
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n n
A = g
n k§1 Uer1,n Sk k_Z_lqku.n Sk-1
n
. kzl(qk,n " Q1,051 * 5,
n
" Qe n T T MED < Qg )5y S,
n
= ‘k§1°k+1,n L 5008

By assumption A4, there exists a random vector S ¢ RP such that

S 23% 5 ag n + =, hence, (4.26) may be rewritten as

n n
T kZIQk+1,n btp8 — . = kZIQk+1,n WA+ B .20

From Lemma 3,

n
D Qo MBS = T-Q s, (4.28)
k=1
so that
n
A= kzlokﬂ,n ARG 7 B) T B SeE, U (4.29)
Since S 838 g, and ||Q1 n” 83%: 0, 1t now remains only to show that
9
for
s, D
b = lklek+l,n wF (8 -5, Dl (4.30)
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bn P51 0 ad-in - -, Using the same notation as in Lemmas 1 and 2,
with K = K(n) the largest integer such that W <n so that |
|
v <n<v, -1, and T = Q i |
K— — K+1 B wan el
\ .
e
b =]Q Q L w R (S -5 )
n Vol =y jeJk j-l-l,\)K L | j-1
= |
+ 1y RG-Sl (4.31)
k=v
K
which can be bounded as
2p K-1 K-1 P
a.s. max max
oS Sleus NS SO TN AR S i do
n max k=1 Lak+l L Vi k max Vg
(4.32)
where dk is defined by 1 _
d, = max IFj(S - sj-l)l . (4.33)
jEJk i
It follows from A5 that dk 8:%:0 as k+ o, g0 that it now remains
only to show that for
N (4.34) |
= it r w d , .34 {
L L N
ex 835+ 0 as K+ o with n over some subset of the positive integers.
1
Defining Bk 2 My, -1 Phin §, from Lemma 2 there exists a ko such |

G cals i

that for all k >k , [T |l b i B+ It is assumed that k is

large enough so that Bk <1 for all k > ko. Proceeding, for all

K>k,




k -1 K-1 k -1
(]

3o n alln il TS
< no|lr I It ll u, d + I Tollu,  d
®F ik S ksk fektl  © Vi K
LRl kcy,'l Kil K-1
47 WO - =g e T (1-8,)8, (u d B8
1=k _ e Bk o pehy B R M B
(4.35)
Define
n
a = T (1-8,)8, . (4.36)
o i A
Clearly, for all fixed i > ko, a;” 0 as n » =,
From Lemma 3,
e A n
a = T 1-8,)8, =1~ 1 (1L-8,), (4.37)
ok T et e S fuk -
(o] o (o]
which converges a.s. to 1 as n > », go that by Lemma 4,
K-1
1lim -l.a.8lim -1
a, . . (u dg )= T M W (4.38)
K-mk_kol(l,k v Kk 7T ke Ttk
From Al and the definition of Bk
2 d
R uv“ : € 3bp., o (4.39)
oty SRS | pmincl- Pmin max ! :
k+l
and hence, from AS,
1im -1, a.s.
k-w("vkdkek) 0o . (4.40)
QuE.D.

With the theorem established, considerable attention will now be

given to the establishment of corollaries which will guarantee under

_1).
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extremely realistic conditions, that assumptions Al through A5 are
satisfied. It will be expedient to make use of the order notation,
o(-), e.g., £f(n) = 0(g(n)) if £(n)/g(n) 1is bounded as n -+ =,

A worthwhile simplification of assumptions Al through A5 results
in the case IIFnll is a.s. bounded. In this case, the following

corollary is easily established.

COROLLARY 1. If w, = 0(k'1), kn ku, > 0, and ||Fk|| i8 a.s.

K-+

bounded, then A1, A2, and A5 may be deleted and the theorem remains

true.

PROOF. It suffices to consider M = k—l. Assumption Al is trivially

satisfied. That A4 implies A5 can easily be seen by noting that there
a.s. a,s.

exists an M 2¢°° «» such that |Fn(S - sn_l)l < ||Fn||-|S - sn_ll ¢

M-|S - s .|, sothat |s -5 | %% 0 inplies that

n-l'
an(s = Sn-l)‘ 338+ 0 as n -+ ». Assumption A2 is easily established

by the Borel-Cantelli Lemma and the Chebychev inequality as follows.

2 -2 2
w € EUIFRATY,

and since k2 1is summable, uk||Fk|| 3% 0 as k + ». Q.E.D.

For all ¢ > 0, Pr{ukHFk” > e} = Pr{HFk" > Euil} <wu

The Borel-Cantelli Lemma, together with probabilistic bounds, such
as the Chebychev inequality, the Markov inequality, or the Chernoff
bound, provides a frequently used technique for establishing the a.s.
convergence of sequences of random variables. Unfortunately, the
available probabilistic bounds often approach zero but are not summable
(unlike the case presented in Corollary 1). The work of Serfling ([58]
and 89]) provides useful techniques by which the above difficulties can

be overcome. For a more complete treatment on a.s. convergence, the

interested reader is referred to the recent text by Stout [g1]. Before

Ml e Y i
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developing the machinery necessary for the proof of Corollary 2, the

a.s. convergence of |S -8 is discussed in order to illustrate

n-lI

the concepts involved.
For all ¢ > 0, the following bound is easily obtained from the

Chebychev inequality:
Pr(|S-S_ .| > e} < e 2 E(|s-5_.|%} (4.41)
n-1 - n-1 . g

where it has been assumed that E{|S - Sn_1|2} < o, It is noted that

S - Sn—l is given by (formally)
(-
8=8.,~ Lug . (4.42)
k=n
so that
2 [ [
Efls -8 1"} = kz I waECCT . (4.43)
n £=n

Suppose for the moment that E{C’Cz} = Gk 2 and that W = 0(k-1),
’

k
where Gk . is the Kronecker delta function
’
sdly 1 kg
S,2 {o, if ki 8 (4.44)

Then E{|S - sn-llz) = O(n-l), which is seemingly the fastest rate one
can expect, so that it is indeed fruitless to attempt the direct appli-
cation of the Borel-Cantelli Lemma to (4.41) to obtain the a.s. conver-
gence of |[S - sn-l" However, while the summability of E{ls-sn_llzl
seems impossible, it would seem reasonable to require that

E(|S - sn-llz} + 0 as n + =, Although mean-square convergence and

a.s. convergence are not equivalent, in view of A4 it does not seem

m_;s.

sl

unduly rest;ictive to require that Sn

o
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Suppose that E{IS - Sn_llz} -0 as n + o, Then there exists

an increasing subsequence {nk} such that n +>* as k + ® and

I‘2117.{|s - snk_llz} <o , (4.45)

hence |S - S 258 0 as k + =,

“k'll

This fact can be used by noting that for all n ¢ Lk’ with

L= {nk,nk+1,...,nk+1-1},

3 w
Is-s .l =1| i{ we, + I wel
=n i-nk+1

iy |
< max puC,| +|S -8 A (4.46)
fel, tmt 1 Ll

For all sequences {nk} satisfying (4.45) and such that

M1t Frg
max | J wc,| o0 (4.47)

L e Lk i=9
as k+=, |S- sn—ll 3% 0 as n -+ =. The work of Serfling ([58]
and [59]) is easily applied to terms like (4.47)
The following lemma, a multidimensional version of Theorem A of
(sd, will be shown to be invaluable for the establishment of conditions
similar to (4.47). The proof of Lemma 5 is a simple modification of

that given in [58] and will be omitted.

LEMMA 5. (Serfling) [58]. Let {zi} be a sequence of random vectors,
z, ¢ B having finite "ariances” o) = El(x; - Blz,})"(z, - Blz,})}.

- i '
For each matrix xﬁ,n = C”a+1""’xa+n) of n consecutive x,'s

Gadadliniars,
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let Fa = denote the joint distribution function and let

£ ]

S = 2., (4.48)

N = nm:{lsa,]l,..., ISa,nl}’ and let g(Fa,n) be a functiomal
depending on Fa
let v > 2. Suppose g(Fa,k) + g(Fa+k,9.) f_g(Fa,k“) for all a 2a,

v v
and 1<k<k+% such that E{ISa,n[ Y<g®(F, ) forall a>a, and

n et a, be an arbitrary but fixed integer and

all n>1. Then E{M;’n} < (log, 2n)vg’!V(Fa,n) for all a>a, and
all n>1.

A rather straightforward modification of Lemma 5 will also be ‘
needed and is presented below as Lemma 6. The proof of Lemma 6 is

virtually identical to that of Lemma 5 and thus will be omitted. ‘1
|

LEMMA 6. Let {xi} be a sequence of random vectors, x € .8

having finite "variances" oz = E{ (xi - E'{a:i})‘(xi - E{xi})}. For each

3 = LN 3 % * '
matrix Xa,n (xa-n Wik ,xa) of n consecutive x,'s let Fa,n
denote the joint distribution function and let

a
SRRtk i (4.49)
DN pegent ¢
Ma,n=m{lsa,1|"'""sa,nl} and let g(Fa,n) be a functional 1

depending on F wn Let a, be an arbitrary but fized integer and
3
let v >2. Suppose g(Fa,k) + g(Fa_k’ 2) _<__g(Fa’ k+!.) for all
v kv
1<k<k#e<a-a such that E{'Sa,nl }<g (Fa,n) for all I<n<a-a .

v v kv
Then E{Ma,n} < (logy 2n) g (Fa,n) for all I1n<a-a,.

Lemma 7 below makes use of common procedures to obtain bounds on

double sums of symmetric functions, such as autocorrelation functions.
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The results of Lemma 7 will prove invaluable in establishing "slowest
decay rates" of the autocovariance functions of {Fk} and {Pk} for
“"gain sequences" {uk} of the form u,_ = O(k-l). The technique of

proof will allow some flexibility regarding the choice of sequence {uk}.

LEMMA 7. Let O o =% g and p(k,%) = p(,k) be real valued
functions defined for all non-negative integers k, L. Then for I<n<m,

define
m m
Y kzn zzn“"" p(k,2). (4.50)
Then
m=-n m-u m
fal % = 2u£1 kznak’ kigg P (Ko ktu) + kg-nak’k plk, k).

Suppose further that there exists a real valued function f(u) such
that for all u = 0,1,2,..., and for all k = 1,2,...,
lotkktu) | < fu), and flu) = 0™ ). If o , =1, then, for large

m-n ad v=1,

() |y, | =0(tm - n)n(m - n)).

n,m

Finally, if O g T VM Vi < O(k.l), and v > 1, then

() v, .| =0 /¥,

PROOF. Let u=%k - ¢ in (4.50). For u = n-m,n+l-m,...,-1; k = n,

ml,...,utm. For u=0; k =n,nl,...,m. For u=1,2,...,m-n;

k = utn,u+n+l, ...,m. Substituting into (4.50),
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T )
Y, - a p(k,k-u) + a o(k,k)
™A en-m k=n k,k-u k=n k,k g
ln-in lil 3
+ a, .. p(k,k-u) . (4.51)
ovl henibn £ 58

Making the transformation k* = k - u in the last series and making

use of the symmetry relations, (a) follows.

Suppose that a, . = 1 and |p(k,ktu)| < £(u) = 0(ul) for all

k,2
u=20,1,2,..., and for all k = 1,2,.... Then

m=-n
Iy, ol <21 £() (@-u-ntl) + (m-n+l) £(0). (4.52)
5 u=1

> 0, and for C, = max f(u),
1<u<m-n

For all 1<%<m-n, for some Cl

5 -
Y < 2C,(m-n)% + 2C (m-n+1) -
n,m 2 q. amg+1 Y

-2(‘1(m-n-!,) + (m-n+l1) f() , (4.53)

which, for some C3 > 0, yields

1Y, ol < 2€,@n)e +2G (n-n+1)2n () +2C10 + (m-n)Cy, (4.54)

since

| £= 2n(n;z9-) ) (4.55)
2

It follows that |Yn mI = O0((m-n)2n(m-n)) for large m-n by letting
’

L = ¢n(m-n). |

Suppose now that a, , = Wb, ¥ = 0(k™!), and that there exists ﬂ

an f(u) = O(u”’) with the desired properties. Thenssince it suffices

to consider only wu, " k-l,
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m-n

v |<2Xf(u)Z +f(o)):
n,m sy k(k+u) i k
Por all l<u<m-n (n>2),
b B i ‘“}“ dx _ _ 1, (=-u)(atu-1)
fea k(k+u) — s x(x+u) u m(n-1)
Similarly, for 2<n<m,
34 ‘}‘ -1
k-n anl 2 n-1
For all 1<u<f<n<m,
(m-u) (n+u-1) n+f-1
e m(n-1) S
for all 1<f<u<n<m-n,
(m-u) (ntu-1)
ln( Il(n-l) ) i n 2
and for all n<u<m-n,
raclmullmtu-l), .,

m(n-1)

Hence, for all 1<f<n-2<m-n-2, with C1 = max f (u),

th | < 2¢, & (5o

n+21

) + 2¢n 2 )

n-1

u=g+1 ¢

m-n
2n(u) 1 1
+2) £(u) 2 TEOICE -2

u=n

Since f(u) = O(u” V), there exists a C

all £>2 , £(u) < Cpu ™"

, 80 that

2

>0 and an 2
o

1 f(u)

(4.56)

. (4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

such that for
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n-1
17 ol < 2 L@y 420, m2 [ &
1 2 1
u=2+1 u
m=-n
fn(u) - L
+ zczuzn I +£0) -2 . (4.63)

Thus, for some fixed C3, 4° 5.

zz( )+C(z) +cl‘(n-1)"’+c in(n-1)

! I 148 5 n-1

1
(4.64)
Substituting £ = ne, B >0, in (4.64), and using the fact that

n(l + x) < x for all x > -1, one obtains

28- =

IYn,ol = 0(2n Pl n B\’). Q.E.D. (4.65)

Finally, if B8 = (v + 2)L, then I*n i o(n-v/wz).
Enough machinery has now been developed to prove the following

useful corollary.

COROLLARY 2. Define

p, (ks %) = E(C}C,) (4.66)
and oplks) = IIE{FkFl} - Ri:ll : (4.67)

Suppose that there exists a real-valued function f(u) = O(u"") (v>1)

such that

maz {|o,(k,kiu) |, oplkkiu)} < Flu) (4.68)

,pF

for all positive integer k and fbr all non-negative integer u.

F'urtkemore, suppose that w, = 0(k™1), LMk > 0, and BU(F, (D |
(@ > 2v (v + 2)) ie bounded. Then Assumptions A1 through AS of
the theorem are satisfied and hence, IVn' 8 0 a8 n -+ =, '3
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PROOF. First, consider assumption A3. Define Sa ¥, by

atn
= F, - R )w, 4.
e k_§+1( e = RV (4.69)

where w ¢ R?. Clearly, assumption A3 is satisfied if and only if

n-llsa n| Bifs s oo wem forall wek andforall aw 1.2, .00,

Define Ma M max{lsa’ll,...,ls |}. Let {nk} be an increasing

’ a,n

sequence of positive integers such that n + o ag k + , For all

A
_1 _1 _1
n Isa,nl o nk Isa,n_k_ll + nk Ma+nk_1’nk+1_nk (4.70)
Clearly,
2 atn a+n 2
E(]s, o7 = X ] wE(EF, - R Jw

k=a+l L=a+l
2 ata ain
< hl® 3 I pp(k,2) =0(mnn) ,  (4.71)
k=a+l fL=a+l

2 -

from Lemma 7. Letting o = Kty nk2 E{ISa nklz} is summable from (4.71).
»

The Chebychev inequality and the Borel-Cantelli Lemma thus imply that

=X a,s. 2
n |sa’nk_1| 370 a8 k> With g(F, ) = E{|s, |}, Lenma 5 and

(4.71) easily yield Efn 2. } = 0((ta k/x)7), vhich is sum-

L
mable. Hence, n_ 838 0 as k + = so that, by (4.69),
Ei i S Y

n-llsa nl #3%° 0 as n -+~ and A3 is satisfied.
’

Now consider A5. Let {nk} be an increasing sequence of positive

integers such that n +> as k + » and let L = {nk,nk+1,...,nk+1-1}.

For all n ¢ Lk’

s
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o4l
jp.(s-8 ) = |r( 1§n n e, +8 - S“k+1'1)l
BT el |
< |I7 |l ¢ u,C.| + s ~s e g
" i=n L% nk+1 1
L . e
<n" max [|F |In; max | } wcC]|
L € Lk L e Lk 1=4
-8 B
+ max |[|F, ||n |S -5 .|, (4.72)
i L e 2% Mt
where as yet, B8 > 0 1is arbitrary.
Defining
)
S = u,C s (4.73)
0 jegpi 11

and M = max{lsa’ll,...,ls [}, (4.72) becomes

a,n

[F (s -5 )] < 8 max ||F||(BM E + Bls-s 195
> L nk!.sl..k 2!k Mg LoMeg K TS

(4.74)

Since

a a
Ew I owuge, (LD, (4.75)
i=a-n+l j=a-n+l

E{|s l2
a,n

2 .
vith g(F, & E{Isaml }, Lemma 6 applies so that

(M 2

2

“k+1’1"‘lc|-1'“k) 5
(4.76)

b e siSineadeg sl
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From (c) of Lemma 7, g(F i S 0('V/V+2). From (4.43) and
M1 ™o ek M "
|2 -v/v+2

} = 0(ny,y

Lemma 7, E{|S -5,

). If {n,} and B > 0 can be
+1 nk

chosen such that (i) Z k-qB < =, (i1) z nﬁs E{]S - S } < », and
k=1

k=1
L
kzlnis E{Mik Lo, } < @, then the Markov inequality, the
- + i

Borel-Cantelli Lemma, and (4.74) will show that |F_ (s -5 )| %% 0

lZ
Mt

(1i1)

as n+ =, It is easily verified that for n = K%, q_1<s<v(2v+4)-1,

and a > (v+2)(v-28(v+2))-1, (i), (ii), and (iii) are satisfied.

1lim

low Ky > 0 dimply Al

Finally, w, = Ok 1), E(J|F_||%) bounded, and

and A2; while (ii) and (iii) imply A4. Q.E.D.

B. Application of Corollary 2

In this section, the results of the previous section are applied
to the algorithms discussed in Chapter II. In order to apply Corollary
2, it is necessary to establish asymptotic decay rates on pc(k,z),
and pp(k,z), as defined by (4.66) and (4.67). Define pP(k,z) =

IE{PLP,} - P'P|. From (4.66), (4.4), and (4.5),

log (k23| = [E(CLC Y

IE{PI"Pz} - wI(E{F P} + E{F, P }) + "S{Fsz}"ol

IA

IE{Pl;Pz} - p°P| + |P°P - w;E{Fsz}l

@ i 2 2
+ |p°P - "oE(Fsz}I + Iwol |EtF,F,} - Rxx”

|IA

pp (ky2) + lwo | IR P - E{F P }|

2
+ | | [R P - E{F P} + |w |Top(k,2) . (4.77)

Hence, by defining
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ppp(kst) = |R P - E{F, P}, (4.78)

|

pc(k,z) can be bounded as J
t

log (:2) | < ppks) + [w [ppp(k,2) + |w [ppn (2,K)

+ |w |20, (k,0) (4.79)
o F ’ L .

with (4.79) established, it is easily seen that in order to establish
decay rates on pc(k, ), and pF(k,l), it is sufficient to consider
pP(k,z), pFP(k,z), and pF(k,z). Before treating specific examples,
expressions for Pps Prp and Pr will be developed which are

sufficiently general to cover most of the algorithms treated in

Chapter II.
Let {xj}°__° and {Nj};__°° be sequences of RP-valued zero-
mean random variables, and let {sJ};__°° be a sequence of real-valued
zero-mean random variables. It is assumed that E{xk Nk+u} = E{Nk Nk+u}
and E{ska+u} = 0 for all integers k and u. The ijth element of
a matrix A will be denoted by (A)1 g It is assumed that all fourth-
]
order moments correspond to stationarity; e.g., E{s£8£+i(xz+j)m1(xz+k)m2}
is independent of £. Define
Rxx(u) = E{xkxk_,_“} ' (4.80)
Pa(“) - E{skxk+u} > (4.81)
and ‘
]
ps(u) - E{sksk+u} & (4.82) ]

Consistent with the notation used previously, define Rxx(o) = ka,

and PS(O) = P,




65

The following def Initfons for Pk and Fk will be sufficient for

the purposes of the present analysis. Define
Pk = skxk ’ (4.83)

and
Fk = kai s (4.84)

Clearly, E{Pk} =P and E{Fk} =R __» so that (4.6) and (4.7) are satis-
fied. Most of the algorithms which have been proposed for use in
adaptive signal processing use Fk = xkxk and either Pk = skxk or

Pk =P = E{skxk}. In case Pk = P, pp(k,z) = 0 and pFP(k,z) £ 0, 80
that in this case one need only consider pF(k,z).

First consider pF(k,z). From (4.84),

E{Fka+u} = E{xkxi8k+uxi+u} . (4.85)

In case Xj is a multivariate Gaussian Random Process (GRP), it is

easily shown that from (4.80),

E{xkx£8k*uxi+u} = R:x + R:x(u) + Rxx(u)tr(Rxx(u)), (4.86)

by recalling that if Yl’Yz’Y3’ and YA are jointly normally distri-
buted zero-mean random variables, then E{Y1Y2Y3Y4} - E{YIYZ}E{Y3Y4}
+ E{Y1Y3}E{Y2Y4} + E{YIYA}E{Y2Y3}. In general, define nl(u) such

that

4 : 2 2 |
E(X XX X} =R+ R () + R (er®R () +x (v,
(4.87)

so that

2 2
E{F } - Rxx = Rxx(u) + Rxx(u)tr(ka(u)) + Kl(u). (4.88)

K ketu
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Next consider pp(k.l). From (4.83),

E{P£Pk+u} = E{skxisk+uxk+u} i (4.89)

In case sk’xk’sk+u’ and xk+u are jointly normal, then

E{skxisk*uxk+u} = P°P + pS(u)tr(RXx(u)) + P;(u)Ps(u). (4.90)

In general, define Kz(u) such that

Els, X8, 1 Kiy] = PP+ o (Er(R (w)) + PZ(u)P (-u) + K, (u). f

(4.91)

Then pp(k,k+u) can be determined from

E{PiPk+u} ~PP= ps(u)tI(ka(u)) + P;(u)Ps(-u) + Kz(u).

(4.92)

It is important to reiterate that in case Pk = P, then pP(k,k+u) = 0.
Finally, consider oFP(k,z). From (4.83) and (4.84),

B{kak+u} = E{xkxk’k+uxiﬁu} . (4.93)

Proceeding as before, (4.93) can be expressed as
n{xkxisk+uxk+u} = R*xP + Ps(-u)tr(R*x(u)) + R*x(u)Ps(-u) + K3(u),
(4.94)

where n3(u) = 0 1in the normal case. Hence, prp(k,k+u) can be

determined from (4.78) and
E{FkPk+u} -~ kaP = Ps(-U)tr(Rxx(u)) + Rxx(u)Ps(-u) + K3(U) L

(4.95)

Again, in case P, =P = E{skxk}. then pp,(k,2) = 0.

k
A useful fact for the application of the above results is that

for a pxp matrix A,
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PP
llall 5’321(121(A)i’3)1/2 ; (4.96)

i.e., the norm of A is bounded by the sum of the Euclidean lengths of

its columns (or rows), as shown, e.g., by Rudin [62]. Define

(u) = max |(R__(u)) ’ (4.97)
31 liigjf_PI xxu i;j|
and
g,(u) = max I(Ps(u))ml ; (4.98)

l<m<p

/

then, from (4.96), |[R_ (] < p’ % (u). From (4.67), (4.88), and

(4.97),
32
pp(k,ktu) < p” g (u) + ”Kl(u)||. (4.99)

From (4.92), (4.97) and (4.98),

pp(ksictu) < pelp, (@)]g, () + pogaCw) + |k, (w)]. (4.100)

From (4.78), (4.95), (4.97), and (4.98),

3/

(c,kehw) < 272, (g, (u) + pPg; (g, () + ey, (4.100)

°rp
Now, from (4.79), (4.100), (4.101), and (4.99),
loc (ki) | < pelo_(w)]g () + 207w _|g, (g, (w)

2 2 2 2
+ 02w | %) + p g2 + |w | % lley ]

+ Ple(“)I + 2|w0|~|n3(u)| $ (4.102)

by noting that gl(u) and gz(u) are even functions. Finally, by

defining

g(u) = max (g,(u), g,(u), [p (] , (4.103)
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there exist positive constants 81’82’83’ and a, such that
max (pF(k,k+u), Ipc(k,k+u)|)
2
<a;g (u) + aékl(u)“ + a3|K2(u)l + aQIK3(u)| . (4.104)

THE NORMAL CASE

In case {Xj}, {Nj}’ {sj} are GRP's, then ”Kl(u)” = lgz(u)l
E |K3(u)| = 0, so that
max (pp(k,ktu), [o (k,khu)|) < ag”(u) . (4.105)

Also, in the normal case, E{lanH7} is bounded. Hence, all algorithms
of the form of (3.1), with - X X5 Pk = skxk or Pk =P = E{skxk},

and He = O(k-l), 1lim kp
koo

and hence, converge almost surely provided that g(u) in (4.105) is

k > 0, satisfy the hypotheses of Corollary 2

O(u-llz). This result suggests that essentially all one needs to do to
establish a.s. convergence for this class of algorithms in the normal
case is to ensure that all scalar correlation functions vy(u) which

can be computed for {s,}, {X

j j}’ satisfy %}g ullzlY(u)l < o,

EXAMPLE 1

Let {n(t): - < t < ®} and {s(t): =-» < t < «»} be zero mean
jo}ntly wide-sense stationary finite variance Gaussian random processes.
Define x(t) = n(t) + s(t), and assume that E{s(t)n(t + 1)} = 0 for
all t,r. Define the '"data vector" X’(t) = (x(t), x(t-D), ... ,
x(t-(p-1)D)). Suppose that it is desired to form a linear MMSE estimate
of s(t +a) at t = kT, k = 0,1,2, ... , based on the '"data vector"
xk = x(t)'t-kT’ where D 1is an integer multiple of T. Denoting

s(t + u)l by Sy it is easily shown ‘nat the desired linear MMSE

t=kT

estimate of s

is given by Qk = iyxk. where L is the (assumed

k
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unique) solution of R w =P, R = E{xkx;}, and P = E{skxk}. Defining
Y, (1) = Elx(e)x(t+0)}, y (1) = E{n(t)n(t+1)}, y (1) = E{s(t)s(t+r)},

Rxx(u) = E{xkxlz-i—u} and Ps(u) = E{skxkﬂ}, it is easily seen that

(Rxx(u))i’j = yx(u'l‘ + (i-j)D)
= Ys(uT + (i-j)D) + yn(uT + (i-§)D) , (4.106)
and
1"3(u))Im =ys(uT - a - (m-1)D). (4.107)

Define Ss(f) = F{ys(r)}, Sn(f) = F{y“(r)} to be the spectral densities
for the processes s(t) and n(t), respectively. Suppose the signal
spectral density is the rational density,

b

2 :
Ss(f) iR (4.108)

£ +b1

and the noise spectral density is the ideal lowpass demsity,

by, [fl < B
s_(£) = ; (4.109)

o , |£] > B

where "1"’2’ and b3 are positive constants. Then
b

v (0 = b_z pe-2mylTl (4.110)
1
and
sin 27Bt
“‘(T) 2b3B 7Bt . (4.111)

It is easily seen that for this example, g(u) defined by (4.103) is

o(uol). Suppose that P 1is known and consider the algorithm

1 »
W =W -E(P - xkkak), (4.112)

ktl

for k > 1, with W, arbitrary. Clearly, all of the assumptions of

1

Sidicbainbiaboniarc o an




Corollary 2 are satisfied and hence, W b v, as k + =, Now,

k
suppose that P 1s unknown but 8 is available. Then the algorithm
1 -
wk+1 = wk + k(skxk - xkkak) (4.113)

will converge a.s. to L It is easily shown that algorithms such

as |
,%‘
< |
Wy =W +3C -2 ) X XW) (4.114)
L=k-K+1
and
L
W, =W + = (s, X, -X X W.) (4.115)
5 B S S R e o

will also converge a.s. to v, for any finite positive integer K. 3

The above example shows the ease with which the assumptions of
Corollary 2 can be established for a rather large family of algorithms . ﬂ
in the normal case. A straightforward extension of Example 1 to arbi- ; 1
trary rational spectral densities yields identical conclusions; i.e.,
if n(t) and/or s(t) in Example 1 are finite-order autoregressive
moving average processes, the conclusions remain unchanged. Extensions
of Example 1 to the adaptive array processing of homogeneous random
fields is straightforward, but notationally somewhat cumbersome.

The application of Corollary 2 to the non-normal case is, in
general, more difficult than Example 1 suggests for the normal case.
Two possible approaches for the non-normal case are as follows:

(i) compute bounds on pC(k,l) and pF(k,l) either directly or

via (4.78) and (4.79) and apply Corollary 2 directly, or (ii) compute

bounds on the fourth cumulant functions Kl(u),xz(u), and x3(u),




apply (4.104) and then apply Corollary 2. Example 2 below considers

a rather special case of the former approach. An additional difficulty
arises in the non-normal case in establishing that E{lan"q} 1s
bounded.

EXAMPLE 2

Let {nk}

. {sk}:__u be independent, zero mean, finite variance,

k==
wide~-sense stationary stochastic processes. Assume that both {nk}:__°°
and {sk}:__m are M-dependent. Recall the definition of M-dependence

= ! -
from Chapter III. Define X, = 8 + n, and xk (xk’xk-l""’xk—p+1»
Define Fk = kaL and assume that E{I[Fk”q}, q>2, is bounded. Suppose

that it is desired to form a linear MMSE estimate of s, based on the

k
= y'! 3

data vector Xk. The desirgd estimate is easily shown to be Qk woxk’ |
B

where A is the (assumed unique) solution to R V= P, ka = E{kak}.
and P = E{skxk}. It is easily seen that HpF(k.k+u)" = %
”E{kakxk+uxk+“} Rxx” 0 for all u> M, for some M, > M. .

Similarly, (k,k+u), and pP(k,k+u) are easily shown to be zero

-

Prp

for all |u| > M2 (for some M, > M) for either Pk = skxk or

2

- - -1
Pk P = E{skxk}. Letting My k ~, all of the assumptions of

Corollary 2 have been established. It is not difficult to show that

T T

algorithms such as (4.114) and (4.115) will also converge a.s. to LA
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